Planetary birth revealed in best image yet from world’s most powerful telescope!

Planetary birth revealed in best image yet from world’s most powerful telescope ~ Rachel Feltman, The Washington Post’s Speaking of Science blog.

ESOcast 69 presents the result of the latest ALMA observations, which reveal extraordinarily fine detail that has never been seen before in the planet-forming disc around the young star HL Tauri. (ESO)

Protoplanetary disks are the source of planet formation, but until now we’ve only seen them as fuzzy blobs, or in artistic renderings. But in a new image from ALMA (the Atacama Large Millimeter/submillimeter Array), we see the disk left behind after a star birth in stunning new clarity.

Stars form when gas and dust are crushed together by gravity. The leftover particles gather around the new star, forming the concentric disks you can see in the image above. Over time, these tiny particles group together to form rocks, and eventually asteroids — and even planets — can be born from the dust.

Observing protoplanetary disks is important for obvious reasons: The closer we get to watching a planet actually being born, the better we’ll understand our own planet’s origins.

This particular disk surrounds a young star named HL Tau, located around 450 light years from Earth in the constellation Taurus. The incredible resolution of the image is impressive, but we could see ALMA’s images get even more focused.

This video takes you 450 light-years away to HL Tauri in the constellation of Taurus and reveals the astonishing depth and detail that ALMA can now attain. The start of the sequence shows a wide view, including the Pleiades and Hyades naked eye star clusters. Zooming reveals detailed visible-light image from the NASA/ESA Hubble Space Telescope and the final part shows the new ALMA image at millimeter wavelengths. (ALMA (ESO/NAOJ/NRAO)/NASA/ESA/N. Risinger)

ALMA, which is run as an international partnership between Europe, North America and East Asia, is a telescope made up of 66 high-precision antennas that can be moved into different configurations. These antennas capture radio waves from space, and when their data is combined, they can create images with five times the resolution of the Hubble Space Telescope.

But while ALMA is close to its final configuration, it’s not quite running at its maximum resolution yet. Researchers spaced the antennas as much as 15 kilometers apart to get the image above. In earthly terms, this configuration would allow the telescope to take a shot of a penny from 110 kilometers away.

In the near future, the satellites will be moved another full kilometer apart — further increasing the resolution.

| Planck satellite: Maps detail Universe’s oldest light!

Planck satellite: Maps detail Universe’s ancient light ~ Jonathan AmosScience correspondent, BBC News, Paris.

______________________________________________________

A map tracing the “oldest light” in the sky has been produced by Europe’s Planck Surveyor satellite. Its pattern confirms the Big Bang theory for the origin of the Universe but subtle, unexpected details will require scientists to adjust some of their ideas.
______________________________________________________

A spectacular new map of the “oldest light” in the sky has just been released by the European Space Agency.

Scientists say its mottled pattern is an exquisite confirmation of our Big-Bang model for the origin and evolution of the Universe.

But there are features in the picture, they add, that are unexpected and will require ideas to be refined.

The map was assembled from 15 months’ worth of data acquired by the 600m-euro (£515m) Planck space telescope.

It details what is known as the cosmic microwave background, or CMB – a faint glow of microwave radiation that pervades all of space.

Its precise configuration, visible in the new Planck data, is suggestive of a cosmos that is slightly older than previously thought – one that came into existence 13.82 billion years ago.

This is an increase of about 50 million years on earlier calculations.

The map’s pattern also indicates a subtle adjustment is needed to the Universe’s inventory of contents.

It seems there is slightly more matter out there (31.7%) and slightly less “dark energy” (68.3%), the mysterious component thought to be driving the cosmos apart at an accelerating rate.

“I would imagine for [most people] it might look like a dirty rugby ball or a piece of modern art,” said Cambridge University’s George Efstathiou, presenting the new picture here at Esa headquarters in Paris.

“But I can assure you there are cosmologists who would have hacked our computers or maybe even given up their children to get hold of this map, we’re so excited by it.”

Planck is the third western satellite to study the CMB. The two previous efforts – COBE and WMAP – were led by the US space agency (Nasa). The Soviets also had an experiment in space in the 1980s that they called Relikt-1.

How Planck’s view hints at new physics

Planck anomalies graphic
  • The CMB’s temperature fluctuations are put through a number of statistical analyses
  • Deviations can be studied as a function of their size on the sky – their angular scale
  • When compared to best-fit Big Bang models, some anomalies are evident
  • One shows the fluctuations on the biggest scales to be weaker than expected
  • Theorists will need to adjust their ideas to account for these features

The CMB is the light that was finally allowed to spread out across space once the Universe had cooled sufficiently to permit the formation of hydrogen atoms – about 380,000 years into the life of the cosmos.

It still bathes the Earth in a near-uniform glow at microwave frequencies, and has a temperature profile that is just 2.7 degrees above absolute zero.

But it is possible to detect minute deviations in this signal, and these fluctuations – seen as mottling in the map – are understood to reflect the differences in the density of matter when the light parted company and set out on its journey all those years ago.

The fluctuations can be thought of as the seeds for all the structure that later developed in the cosmos – all the stars and galaxies.

Scientists subject the temperature deviations to a range of statistical analyses, which can then be matched against theoretical expectations.

This allows them to rule in some models to explain the origin and evolution of the cosmos, while ruling out a host of others.

The team that has done this for Planck’s data says the map is an elegant fit for the standard model of cosmology – the idea that the Universe started in a hot, dense state in an incredibly small space, and then expanded and cooled.

At a fundamental level, it also supports an “add-on” to this Big Bang theory known as inflation, which postulates that in the very first moments of its existence the Universe opened up in an exponential manner – faster than light itself.

But because Planck’s map is so much more detailed than anything previously obtained, it is also possible to see some anomalies in it.

Temperature anomalies in Planck data
Planck has confirmed the north/south differences and a “cold spot” in the data

One is the finding that the temperature fluctuations, when viewed across the biggest scales, do not match those predicted by the standard model. Their signal is a bit weaker than expected.

Continue reading the main story

Planck’s new numbers

  • 4.9% normal matter – atoms, the stuff from which we are all made
  • 26.8% dark matter – the unseen material holding galaxies together
  • 68.3% dark energy – the mysterious component accelerating cosmic expansion
  • The number for dark energy is lower than previously estimated
  • The new age – 13.82 billion years – results from a slower expansion
  • This is described by value known as the Hubble Constant
  • It also has been recalculated at at 67.15 km per second, per megaparsec

There appears also to be an asymmetry in the average temperatures across the sky; the southern hemisphere is slightly warmer than the north.

A third significant anomaly is a cold spot in the map, centred on the constellation Eridanus, which is much bigger than would be predicted.

These features have been hinted at before by Planck’s most recent predecessor – Nasa’s WMAP satellite – but are now seen with greater clarity and their significance cemented.

A consequence will be the binning of many ideas for how inflation propagated, as the process was first introduced in the 1980s as a way to iron out such phenomena.

The fact that these delicate features are real will force theorists to finesse their inflationary solutions and possibly even lead them to some novel physics on the way.

“Inflation doesn’t predict that it should leave behind any kind of history or remnant, and yet that’s what we see,” Planck project scientist Dr Jan Tauber told BBC News.

Continue reading the main story

CMB – The ‘oldest light’ in the Universe

Detail of CMB data
  • Theory says 380,000 years after the Big Bang, matter and light “decoupled”
  • Matter went on to form stars and galaxies; the light spread out and cooled
  • The light – the CMB – now washes over the Earth at microwave frequencies
  • Tiny deviations from this average glow appear as mottling in the map (above)
  • These fluctuations reflect density differences in the early distribution of matter
  • Their pattern betrays the age, shape and contents of the Universe, and more

 

More on This Story

Related Stories

Related Internet links

Around the BBC

____________________________________________________________

 

PLANCK 1